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Confluent singularity of the renormalised coupling constant 

Mau-chung Chang’: and J J RehrS 
t Sering Physics Laboratory, Rutgers University, Piscataway, NJ 08854, USA 
$ Department of Physics, University of Washington, Seattle, WA 98195, USA 

Received 31 May 1983 

Abstract. The amplitude of the confluent singular term in the dimensionless, renormalised 
coupling constant U - [ - d ( a 2 x / a h 2 ) / , y 2 =  u*(l  + a i r w “  +. . .) is analysed using both renor- 
malised perturbation theory and high-temperature series expansions by means of E -  

expansion and second-order differential approximants, respectively. Results for the critical 
amplitude ratio a : /a ;  are within uncertainties in agreement, consistent with the prediction 
of universality. 

1. Introduction 

Near the critical point in systems that exhibit second-order phase transitions, a 
thermodynamic quantity f i  behaves as 

Here t = (T  - T,)/T,, A is the Wortis-Wegner (Wortis 1970, Wegner 1972) correction 
to scaling exponent, and ai is the amplitude of the confluent singular term. It has 
been shown that the ratios ai/aj are universal quantities (Aharony and Ahlers 1980, 
Chang and Houghton 1980a, b, 1981, Chang 1980). They have been calculated to 
zeroth order in E = 4 - d  by Aharony and Ahlers (1980) using the Nelson-Rudnick 
(1975) renormalisation group approach, and also (Chang and Houghton 1980a, b, 
1981, Chang 1980) to second order in E using the massless renormalised perturbation 
theory (RPT) (Brtzin et a1 1976, Amit 1978). Recently Bagnuls and Bervillier (1981) 
have calculated these ratios using higher-order RPT estimates (Baker et a1 1976) at 
d = 3 in the massive theory (Brtzin et a1 1976, Amit 1978). Ferer et a1 (1977; Rogiers 
et a1 1979), Nickel (1980) and Nickel and Rehr (1983) have also given the values of 
some ai /a j  using the high-temperature series expansion method (HTSE). Some experi- 
mental values are also available (Ahlers 1980, Bourgon and Beysens 1981). 

Recently there has been some interest in HTSE of the dimensionless renormalised 
coupling constant U - 5-d(C32x/C3H2)/,y2 (5 is the correlation length, x is the susceptibil- 
ity, and H is the magnetic field) for the hyperscaling problem (Rehr 1979, Baker and 
Kincaid 1979). 

The purpose of this paper is to analyse this coupling constant U by taking the 
confluent singular term into consideration using both HTSE and RPT. Some amplitude 
ratios like a:/a,’, a: /a;  and uL,/uG (+means T > T,, M2 is the second moment of 
the spin-spin correlation function defined as t 2 - M 2 / x )  are given. The results of 
both theories are in agreement with each other. 
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2. Renormalised perturbation theory 

We first discuss briefly renormalised perturbation theory. We start from a Ginzburg- 
Landau effective Hamiltonian H, with 

PH = ddx H(x), 

H (x 1 = t[v4 (x 11’ + TCL 4 (x 1 + (A/4 ! ) [4  2(x )I2.  
1 2 2  ( 2 )  

Here 4 ( x )  is a local n-component vector field. Expressions for amplitude of the 
confluent singular term a, have been given explicitly in the massless and massive RPT 
in Chang and Houghton (1980a, b, 1981), Chang (1980) and Bagnuls and Bervillier 
(1981), respectively. The distinction between the two different renormalisation 
schemes is that in the massless theory, the renormalisation conditions are fixed at 
T = T,, while the massive theory is renormalised at T # T,. 

The starting point here is the scaling equation for the vertex function rg,N) in the 
massless theory (see Chang and Houghton 1980a, b, 1981, Chang 1980, BrCzin et af 
1976, Amit 1978): 

g = K E U .  (6) 
Here Tk”), t, M and g are renormalised quantities; p f  is the value of p 2  at T = T,; 
K is an arbitrary momentum scale; and Z+ and Z4z are the renormalisation constants 
which can be calculated from the renormalisation conditions. When U is close to its 
fixed point U * ,  we find 

raL.N)(pl.. . p 2 ,  q l . .  . qN; t, M = 0 ,  U )  

- y N ~ L i v [ d - N ( d - Z + r l ) / 2 1 - L  ( L . N )  - r R  (pi-” ; = 1, kf = 0, U *, K = 1) 

(arg.N)(pi-u; t = I, M = 0, U ,  K = l ) /au I,* 
r : . N ) ( P i - u  t =  I , M = o ,  U * ,  K = 1) 

x 1 + ( u  -u*)t ‘””  [ 
)I (7) 

- t N [ a ~ ( U ) / a u ] ~ , * + Y [ d - : N ( d - 2 + ~ ) ] ( a v ~ ’ / a u ) ~ , *  
W 

which identifies the correction to scaling amplitude ai. All the renormalised quantities 
can easily be rewritten in terms of bare quantities using (3), (4) and ( 5 ) .  

In the massive theory the renormalised vertex function rkLVN) is also related to the 
bare one by 

rk“.N)c{qi; (pi; m, U )  = zY2 ( z 4 m r ‘ L ? { q i ;  bi; p 2 ,  A ,  A). (8) 
The renormalisation conditions are defined at T # T,. We should note that both U ’ S  

in (7) and (8) are the dimensionless renormalised coupling constants in the massjess 
and massive theory respectively. They are two completely different quantities, 
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although we still use the same conventional notation. In the massless theory U is 
temperature independent, while in (8)  it is a function of temperature. 

From the renormalisation conditions, it is easy to see that x-’ = rC0”’ (0 ;  p 2 ,  A )  = 
Z;’m2 and 

Also using 
= a&/aH = [r‘o,2’c&, cL2)1-1 = [a2r(&, p2)/a&*]-’ 

(r(&-,F2) is the free energy, & is the magnetisation), we can simply use chain 
differentiation to establish that 

t - d ( a 2 X / a ~ 2 ) / X 2  = -6- d x 2 r (41 (p = 0 )  = - m d m - 4 ~ f 2  P4)(p = 0 )  

- - -m rR’ ( p = O ) = - U  ( T >  TA. (9) - -F  (041  

This is exactly the dimensionless renormalised coupling constant in the massive theory. 

3. Confluent amplitude in RPT 

We now calculate a: in the massless theory. Then using the known values of a; ,  a ;  
and u L 2  = (2a; + a ; ) ,  we can immediately determine a : /a ; ,  a : /a ;  and aL2/a,’.  
We shall also reproduce these results in the massive theory. This serves as a check 
that such universal quantities are independent of the renormalisation scheme. 

From (9), we have 
- d  2 (0.4) = 6 r (p = 0) = = 0) 

- - y 4 - 4 j d v - 2 v + v ( d - ( d - 2 + q ) 2 i  rid([ = 1, u*)&(t = 1, U = U * )  

= t i d ( t = l , u * ) X i ( t = l , u  = U * ) r p 4 ) ( p = ~ ; t = 1 , U * )  

x rkOs4’(p = 0; t = 1, u*)[l +t””(-da,C, +2~,‘,  + u ; F , ~ J ) ]  

x [ 1 + tu” (-da lK + 2~2 , ‘~  + U &(4]. (10) 
Note that y = v(2 -7) has been used. The Feynman diagrams of rgS4’(p = 0; t = 1, U )  
are shown in figures 1 and 2. Therefore after some algebra we have 

= (U - U *)XU” - n + 8 [  I + &  (3  -+-- n + 2  l l n + 4 6 ) ]  
6~ 2 2 ( n + 8 )  (n+8)’ * 

Using the known values (Chang and Houghton 1980a, b, 1981, Chang 1980) 

n + 2 ( 1 + E  3 n 2 + 5 0 n  + 148 
12& 

n + 2  3 (n2+  16n + 4 4  

a& =-(U -U*)X0”- 

a;K =-(U -U*)XWY- 
( l+‘  2 ( n + 8 ) 2  6.5 



1 
c- -.. I - 1 

PZ ibl- = 7 
P + f  

Figure 1. ( a )  Bare vetex function r'0'41(p = 0; A ,  w 2 )  to first order of A (bare coupling 
constant). (6) The Feyman propagator used in ( a ) .  

- -  lbi - - ' 
P2' i iZ  

Figure 2. (a)  Renormalised vertex function T$.4'@ = 0; U, t, K )  to first order of U in which 
K is an arbitrary momentum scale. (b)  The Feynman propagators used in (a). 

we obtain 

a:R = -(4-&)a;, +2a,', +a;,t(,.4J 

3 9n +42 
l + &  - ( 

6.5 2 (n +8) (14) 

Then it follows that ( n  = 1, d = 3) 

u ~ / u ;  = -3(1 + E (  -&))=-2.22, (15) 

u : / u ;  = -6(1 + E  ( - E ) )  = -3.78, (16) 

aL,/a; = 1+2a;/a; =1+(1+0.11&)=2.11 .  (17) 
We can check these results using the massive theory. Bagnuls and Bervillier (1981) 

have the formula 

A "  1 
A U 

U = U * + (Xt)"" (4) = U *[ 1 + --* (Xt)"" ($)"I. 
Comparing (9) and (18), 

2 &t = 1, = I ,  = u*)rko*49p = 0 ;  t = 1, 

calculated in the massless theory indeed gives 

6 1 3(3n + W)] = 
- [ 1 + E  
in +8) in +SI' 

in the massive theory. We can take the ratio a L / a l  and get 

at4 
+ 

U *  - _-  
U,' y\l)/o + ( 2 - ? - / ) [ v / ( w v  +l)][(y!? -yL" ) /w  -y\"/(2-?7)]' 
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Using all the known values in the massive theory (Brkzin et a1 1973), equation (19) 
gives exactly the same result in (15). 

4. Confluent amplitude in HTSE 

The approach for estimating a:  in HTSE is based on an analysis of the series x ( y )  
introduced b Nickel and Sharpe (1979) where x is the squared correlation length 
and y = cu-” (c is a constant chosen such ahat x / y  + 1, y + 0). We follow the method 
outlined in Rehr (1979) based on second-order homogeneous differential 
approximants biased with a fixed value of y*. Near y * ,  one has 

(22) X ( Y ) / Y  = A + ( 1  - y / y * ) - ’ ”  +B’(1 - Y / Y * ) - ’ ’  

while near T,, the squared correlation length diverges as 
+ - 2 v  x=c t 

where t = (1 -K/K,), K, being the critical value of J/KT.  Combining (22) and (23) 
gives for d = 3 the relation 

(24) 
Since the precise value of y *  is uncertain, calculations were carried out at y *  = 

0.1602, 0.1608 and 0.1615 using series containing 12 and 13 terms. Since the work 
of Rehr (1979) and Nickel and Sharpe (19?9), one additional term has been added 
to x ( y ) ,  owing to the availability of an additional term in the x’’ series (McKenzie 
1979). It is found that the critical amplitudes are linearly correlated with the value 
of the leading exponent, with a slope SA+/Sw -0.1. Also it is found that the results 
of various approximants for both 12 and 13 terms are most nearly consistent with 
y *  0.1608, somewhat higher than the value 0.1602 reported in Rehr (1979). Our 
results are summarised in table 1. The value of w is the central value among the 
various approximants, and the value of A’ is that corresponding to this w ,  taking into 
account the correlation noted above. Values of a:  are obtained using (24), with 

a , ’ = ; ( A + y * / C  + ) w / 2  . 

Table 1. Critical parameters of x ( y ) / y  against y *  from HTSE [present work) and, for 
comparison results from RPT, with a; (HTSEj = -0.12 (Nickel and Rehr  1983). 

HTSE R PT 

Y *  0.1602 0.1608 0.1615 0.1615“ 
w 0.79 0.78 0.78 0.79’ 
A+ 0.0087 0.013 0.024 - 
a, 0.21 0.25 0.32 - 
a : / a :  -1.75 -2.08 -2.67 -2.22 

+ 

a Nickel and Sharpe 1979. 
’ BrCzin et a1 1973. 
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C' = 0.199 (Fisher and Burford 1967). Results for the critical amplitude ratio are 
based on the estimate a,' = -0.12 for the Ising model (Nickel and Rehr (1983). 

Interpolating in table 1 to match the results of RPT for a:/a,+ gives y *  = 0.1612, 
close to the RPT estimate of 0.1615. If one adopts y *  = 0.1615, however, one obtains 
an amplitude ratio a : /a ;  some 10% higher than that of the RPT. Thus, while these 
results suggest consistency between the RPT and HTSE approaches, the present uncer- 
tainty in the value of y *  prevents a definitive comparison. The need for longer x'' 
series is clearly indicated. 
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